题目
(2020年全国Ⅲ卷)如图,两侧粗细均匀、横截面积相等、高度均为H=18cm的U型管,左管上端封闭,右管上端开口。右管中有高h0= 4cm的水银柱,水银柱上表面离管口的距离l= 12cm。管底水平段的体积可忽略。环境温度为T1= 283K。大气压强P0 = 76cmHg。 (i)现从右侧端口缓慢注入水银(与原水银柱之间无气隙),恰好使水银柱下端到达右管底部。此时水银柱的高度为多少? (ii)再将左管中密封气体缓慢加热,使水银柱上表面恰与右管口平齐,此时密封气体的温度为多少?
答案:(i)h=12.9 cm (ii)T2=363 K 【解析】:(i)设密封气体初始体职为V1,压强为p1,左、右管的截面积均为S,密封气体先经等温压缩过程体积变为V2,压强变为p2,由玻意耳定律有 p1V1=p2V2 .......................................................................................................① 设注入水银后水银柱高度为h,水银的密度为ρ,按题设条件有 p1=p0 +ρgh0.....................................................................................................② p2=p0 +ρgh......................................................................................................③ V1=(2H–l–h0)S,V2=HS............................................................................④ 联立①②③④式并代入题给数据得 h=12.9 cm......................................................................................................⑤ (ii)密封气体再经等压膨胀过程体积变为V3,温度变为T2,由盖—吕萨克定律有 ..............................................................................................⑥ 按题设条件有 V3 =(2H– h)S.................................................................................⑦ 联立④⑤⑥⑦式并代入题给数据得 T2=363 K............................................................................................⑧