题目

如图,AB∥CD,∠1=∠2,∠3=∠4,试说明AD∥BE 解:∵AB∥CD(已知) ∴∠4=∠______(______) ∵∠3=∠4(已知) ∴∠3=∠______(______) ∵∠1=∠2(已知) ∴∠1+∠CAF=∠2+∠CAF(______) 即∠______=∠______(______) ∴∠3=∠______ ∴AD∥BE(______).   答案:【考点】平行线的判定与性质. 【专题】推理填空题. 【分析】由平行线的性质可得到∠4=∠EAB,由∠3=∠4可得到∠3=∠EAB,由等式的性质可知∠BAE=∠CAD,从而得到∠3=∠CAD由平行线的判定定理可得到AD∥BE. 【解答】解:∵AB∥CD(已知) ∴∠4=∠EAB(两直线平行,同位角相等) ∵∠3=∠4(已知) ∴∠3=∠EAB(等量代换) ∵∠1=∠2(已知) ∴∠1+∠CAF=∠2+∠CAF(等式的性质). 即∠BAE=∠CAD(角的和差) ∴∠3=∠CAD. ∴AD∥BE (内错角相等,两直线平行). 【点评】本题主要考查的是平行线的性质和平行线的判定,掌握平行线的性质和判定定理是解题的关键.
数学 试题推荐