题目

过抛物线y2=2px(p>0)的焦点F任作一条直线m,交抛物线于P1、P2两点,求证:以P1P2为直径的圆和该抛物线的准线相切. 答案:证明:设P1P2的中点为P0,过P1、P2、P0分别向准线l引垂线,垂足分别为Q1、Q2、Q0,根据抛物线的定义,得|P1F|=|P1Q1|,|P2F|=|P2Q2|.∴|P1P2|=|P1F|+|P2F|=|P1Q1|+|P2Q2|.∵P1Q1∥P0Q0∥P2Q2,|P1P0|=|P0P2|,∴|P0Q0|=(|P1Q1|+|P2Q2|)=|P1P2|.∴P0Q0是以P1P2为直径的圆P0的半径,且P0Q0⊥l.∴圆P0与准线相切.
数学 试题推荐