题目

如图,E是矩形ABCD内的一个动点,连接EA、EB、EC、ED,得到△EAB、△EBC、△ECD、△EDA,设它们的面积分别是m、n、p、q,给出如下结论:                                                                  ①m+n=q+p;                                                                                      ②m+p=n+q;                                                                                      ③若m=n,则E点一定是AC与BD的交点;                                                 ④若m=n,则E点一定在BD上.                                                                其中正确结论的序号是(  )                                                                                                                                       A.①③                       B.②④                       C.①②③                   D.②③④ 答案:B【考点】矩形的性质.                                                                           【分析】过E作MN⊥AB,交AB于M,CD于N,作GH⊥AD,交AD于G,BC于H,由矩形的性质容易证出①不正确,②正确;若m=n,则p=q,作AP⊥BE于P,作CQ⊥DE于Q,延长BE交CD于F,先证AP=CQ,再证明△ABP≌△CFQ,得出AB=CF,F与D重合,得出③不正确,④正确,即可得出结论.                        【解答】解:过E作MN⊥AB,交AB于M,CD于N,作GH⊥AD,交AD于G,BC于H,如图1所示:                   则m=ABEM,n=BCEH,p=CDEN,q=ADEG,                                       ∵四边形ABCD是矩形,                                                                           ∴AB=CD=GH,BC=AD=MN,                                                                 ∴m+p=ABMN=ABBC,n+q=(BCGH=BCAB,                                       ∴m+p=n+q;                                                                                      ∴①不正确,②正确;                                                                        若m=n,则p=q,作AP⊥BE于P,作CQ⊥DE于Q,延长BE交CD于F,如图2所示:                 则∠APB=∠CQF=90°,                                                                            ∵m=BEAP,n=BECQ,                                                                       ∵m=n,                                                                                             ∴AP=CQ,                                                                                         ∵AB∥CD,                                                                                       ∴∠1=∠2,                                                                                       在△ABP和△CFQ中,                                                                         ,                                                                          ∴△ABP≌△CFQ(AAS),                                                                    ∴AB=CF,                                                                                         ∴F与D重合,                                                                                     ∴E一定在BD上;                                                                               ∴③不正确,④正确.                                                                        故选:B.                                                                                                                                                                                                                                       【点评】本题考查了矩形的性质、三角形面积的计算、全等三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等是解决问题的关键.                                                                          
数学 试题推荐