题目

 如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切,BD∥AC. (1)图中∠OCD=   °,理由是   ; (2)⊙O的半径为3,AC=4,求CD的长. 答案:解:(1)∵CD与⊙O相切, ∴OC⊥CD,(圆的切线垂直于经过切点的半径) ∴∠OCD=90°; 故答案是:90,圆的切线垂直于经过切点的半径; (2)连接BC. ∵BD∥AC, ∴∠CBD=∠OCD=90°, ∴在直角△ABC中,BC===2, ∠A+∠ABC=90°, ∵OC=OB, ∴∠BCO=∠ABC, ∴∠A+∠BCO=90°, 又∵∠OCD=90°,即∠BCO+∠BCD=90°, ∴∠BCD=∠A, 又∵∠CBD=∠OCD, ∴△ABC∽△CDB, ∴=, ∴=, 解得:CD=3.
数学 试题推荐