题目
如图1,抛物线y=ax2+2x+c与x轴交于A(﹣4,0),B(1,0)两点,过点B的直线y=kx+分别与y轴及抛物线交于点C,D. (1)求直线和抛物线的表达式; (2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t秒,当t为何值时,△PDC为直角三角形?请直接写出所有满足条件的t的值; (3)如图2,将直线BD沿y轴向下平移4个单位后,与x轴,y轴分别交于E,F两点,在抛物线的对称轴上是否存在点M,在直线EF上是否存在点N,使DM+MN的值最小?若存在,求出其最小值及点M,N的坐标;若不存在,请说明理由.
答案:解:(1)把A(﹣4,0),B(1,0)代入y=ax2+2x+c,得 , 解得:, ∴抛物线解析式为:y=, ∵过点B的直线y=kx+, ∴代入(1,0),得:k=﹣, ∴BD解析式为y=﹣; (2)由得交点坐标为D(﹣5,4), 如图1,过D作DE⊥x轴于点E,作DF⊥y轴于点F, 当P1D⊥P1C时,△P1DC为直角三角形, 则△DEP1∽△P1OC, ∴=,即=, 解得t=, 当P2D⊥DC于点D时,△P2DC为直角三角形 由△P2DB∽△DEB得=, 即=, 解得:t=; 当P3C⊥DC时,△DFC∽△COP3, ∴=,即=, 解得:t=, ∴t的值为、、. (3)由已知直线EF解析式为:y=﹣x﹣, 在抛物线上取点D的对称点D′,过点D′作D′N⊥EF于点N,交抛物线对称轴于点M 过点N作NH⊥DD′于点H,此时,DM+MN=D′N最小. 则△EOF∽△NHD′ 设点N坐标为(a,﹣), ∴=,即=, 解得:a=﹣2, 则N点坐标为(﹣2,﹣2), 求得直线ND′的解析式为y=x+1, 当x=﹣时,y=﹣, ∴M点坐标为(﹣,﹣), 此时,DM+MN的值最小为==2. 【点评】本题是二次函数和几何问题综合题,应用了二次函数性质以及转化的数学思想、分类讨论思想.解题时注意数形结合.