题目

在平面直角坐标系xOy中,已知点A(6,0),点B(0,6),动点C在以半径为3的⊙O上,连接OC,过O点作OD⊥OC,OD与⊙O相交于点D(其中点C、O、D按逆时针方向排列),连接AB. (1)当OC∥AB时,∠BOC的度数为          ; (2)连接AC,BC,当点C在⊙O上运动到什么位置时,△ABC的面积最大?并求出△ABC的面积的最大值. (3)连接AD,当OC∥AD时, ①求出点C的坐标;②直线BC是否为⊙O的切线?请作出判断,并说明理由. 答案:解:(1)∵点A(6,0),点B(0,6), ∴OA=OB=6, ∴△OAB为等腰直角三角形, ∴∠OBA=45°, ∵OC∥AB, ∴当C点在y轴左侧时,∠BOC=∠OBA=45°;当C点在y轴右侧时,∠BOC=180°﹣∠OBA=135°; (2)∵△OAB为等腰直角三角形, ∴AB=OA=6, ∴当点C到AB的距离最大时,△ABC的面积最大, 过O点作OE⊥AB于E,OE的反向延长线交⊙O于C,如图,此时C点到AB的距离的最大值为CE的长, ∵△OAB为等腰直角三角形, ∴AB=OA=6, ∴OE=AB=3, ∴CE=OC+CE=3+3,△ABC的面积=CE•AB=×(3+3)×6=9+18. ∴当点C在⊙O上运动到第三象限的角平分线与圆的交点位置时,△ABC的面积最大,最大值为9+18. (3)①如图,过C点作CF⊥x轴于F, ∵OC∥AD, ∴∠ADO=∠COD=90°, ∴∠DOA+∠DAO=90° 而∠DOA+∠COF=90°, ∴∠COF=∠DAO, ∴Rt△OCF∽Rt△AOD, ∴=,即=,解得CF=, 在Rt△OCF中,OF==, ∴C点坐标为(﹣,); ②直线BC是⊙O的切线.理由如下: 在Rt△OCF中,OC=3,OF=, ∴∠COF=30°, ∴∠OAD=30°, ∴∠BOC=60°,∠AOD=60°, ∵在△BOC和△AOD中 , ∴△BOC≌△AOD(SAS), ∴∠BCO=∠ADC=90°, ∴OC⊥BC, ∴直线BC为⊙O的切线.
数学 试题推荐