题目
如图1:直线y= kx+4k(k≠0)交x轴于点A,交y轴于点C,点M(2,m)为直线AC上一点,过点M的直线BD交x轴于点B,交y轴于点D.(1)求的值(用含有k的式子表示.);(2)若SBOM =3SDOM,且k为方程(k+7)(k+5)-(k+6)(k+5=的根,求直线BD的解析式.(3)如图2,在(2)的条件下,P为线段OD之间的动点(点P不与点O和点D重合),OE上AP于E,,DF上AP于F,下列两个结论:①值不变;②值不变,请你判断其中哪一个结论是正确的,并说明理由并求出其值,
答案:(1)(2)(3)解析:(1)解:∵A(-4,0) C(0,) ……2分由图象可知∴OA="4" , OC= ……3分∴ ……4分(2)解: ∵解得: ……5分∴直线AC的解析式为:∴M(2,-3) ……6分过点M作ME⊥轴于E∴ME=2∵∴又∵ ∴∴ ∴∴B(8,0) ……7分 设直线BD的解析式为:则有 解得:……9分∴直线BD的解析式为: ……8分(3)解:②值不变.理由如下:过点O作OH⊥DF交DF的延长线于H,连接EH ……9分∵DF⊥AP∴∠DFP=∠AOP=90º又∠DPF=∠APO∴∠ODH=∠OAE∵点D在直线∴D(0,-4)∴OA=OD=4又∵∠OHD=∠OEA="90" º∴△ODH≌⊿OAE(AAS) ……10分∴AE="DH" , OE="OH" , ∠HOD=∠EOA∴∠EOH=∠HOD+∠EOD=∠EOA+∠EOD="90º " ……11分∴∠OEH=45º∴∠HEF=45º=∠FHE∴FE=FH∴等腰Rt⊿OH≌等腰Rt⊿FHE∴OE=OH=FE=HF∴ ……12分