题目

如图,已知:DE⊥AO于点E,BO⊥AO于点O,∠CFB=∠EDO, 证明:CF∥DO. 答案:【考点】平行线的判定与性质. 【专题】证明题. 【分析】先由垂直的定义可得:∠AED=∠AOB=90°,然后根据同位角相等,两条直线平行,可得:DE∥BO,进而根据两直线平行,内错角相等,可得∠EDO=∠BOD,然后由等量代换可得:∠BOD=∠CFB,进而由同位角相等,两条直线平行可得:CF∥DO. 【解答】证明:∵DE⊥AO,BO⊥AO, ∴∠AED=∠AOB=90°, ∴DE∥BO(同位角相等,两条直线平行), ∴∠EDO=∠BOD(两直线平行,内错角相等), ∵∠EDO=∠CFB, ∴∠BOD=∠CFB, ∴CF∥DO(同位角相等,两条直线平行). 【点评】本题考查了平行线的性质和判定的应用,能运用平行线的性质和判定进行推理是解此题的关键,难度适中.
数学 试题推荐
最近更新