题目

(1)已知函数f(x)(x∈R)是奇函数,且当x>0时,f(x)=2x-1,求函数f(x)的解析式. (2)已知x+y=12,xy=9且x<y,求的值. 答案:(1);(2). 【解析】试题分析: 利用函数的奇偶性求函数的解析式是函数的奇偶性的应用之一,给出函数在x>0的解析式,利用当x<0时,-x>0,借助f(x)=-f(-x)就可以求出x<0时的解析式;指数幂运算要严格按照幂运算定义和法则运算,法则包括同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘;积的乘方等于把积中每个因数乘方,再把所得的幂相乘;本题就是初中的分母有理化,将原式化简后代入求值. 试题解析: (1)当x<0,-x>0,∴f(-x)=2(-x)-1=-2x-1. 又∵f(x)是奇函数,∴f(-x)=-f(x), ∴f(x)=2x+1.又f(x)(x∈R)是奇函数, ∴f(-0)=-f(0),即f(0)=0. ∴所求函数的解析式为f(x)=, (2)解 .① ∵x+y=12,xy=9,② ∴(x-y)2=(x+y)2-4xy=122-4×9=108. 又∵x<y,∴x-y=-6.③ 将②③代入①,得. 【点睛】利用函数的奇偶性求函数的解析式是函数的奇偶性的应用之一,给出函数在x>0的解析式,利用当x<0时,-x>0,借助f(x)=-f(-x)就可以求出x<0时的解析式;指数幂运算要严格按照幂运算定义和法则运算,指数运算包括正整指数幂、负指数幂、零指数幂、分数指数幂的定义,法则包括同底数幂的惩罚和除法,幂的乘方、积的乘方;遇到分数指数幂要化为根式,需要分母有理化.
数学 试题推荐