题目

已知等腰三角形的两边长分别是一元二次方程的两根,则该等腰三角形的底边长为(    ) A.2                                    B.4                                     C.8                                    D.2或4 答案:A 【解析】 解一元二次方程求出方程的解,得出三角形的边长,用三角形存在的条件分类讨论边长,即可得出答案. 【详解】 解:x2-6x+8=0 (x-4)(x-2)=0 解得:x=4或x=2, 当等腰三角形的三边为2,2,4时,不符合三角形三边关系定理,此时不能组成三角形; 当等腰三角形的三边为2,4,4时,符合三角形三边关系定理,此时能组成三角形, 所以三角形的底边长为2, 故选:A. 【点睛】 本题考查了等腰三角形的性质,三角形的三边关系,解一元二次方程,能求出方程的解并能够判断三角形三边存在的条件是解此题的关键.
数学 试题推荐