题目
九(1)班同学在上学期的社会实践活动中,对学校旁边的山坡护墙和旗杆进行了测量. (1)如图1,第一小组用一根木条CD斜靠在护墙上,使得DB与CB的长度相等,如果测量得到∠CDB=38°,求护墙与地面的倾斜角α的度数. (2)如图2,第二小组用皮尺量的EF为16米(E为护墙上的端点),EF的中点离地面FB的高度为1.9米,请你求出E点离地面FB的高度. (3)如图3,第三小组利用第一、第二小组的结果,来测量护墙上旗杆的高度,在点P测得旗杆顶端A的仰角为45°,向前走4米到达Q点,测得A的仰角为60°,求旗杆AE的高度(精确到0.1米). 备用数据:tan60°=1.732,tan30°=0.577,=1.732,=1.414.
答案: 解:(1)∵BD=BC, ∴∠CDB=∠DCB, ∴∠α=2∠CDB=2×38°=76°. (2)设EF的中点为M,过M作MN⊥BF,垂足为点N, 过点E作EH⊥BF,垂足为点H, ∵MN∥AH,MN=1.9, ∴EH=2MN=3.8(米), ∴E点离地面FB的高度是3.8米. (3)延长AE,交PB于点C, 设AE=x,则AC=x+3.8, ∵∠APB=45°, ∴PC=AC=x+3.8, ∵PQ=4, ∴CQ=x+3.8﹣4=x﹣0.2, ∵tan∠AQC==tan60°=, ∴=, x=≈5.7, ∴AE≈5.7(米). 答;旗杆AE的高度是5.7米.