题目
袋子中装有2个红球,1个黄球,它们除颜色外其余都相同。小明和小英做摸球游戏,约定一次游戏规则是:小英先从袋中任意摸出1个球记下颜色后放回,小明再从袋中摸出1个球记下颜色后放回,如果两人摸到的球的颜色相同,小英赢,否则小明赢. (1)请用树状图或列表格法表示一次游戏中所有可能出现的结果; (2)这个游戏规则对双方公平吗?请说明理由.
答案:解:(1)根据题意,画出树状图如下: 或列表格如下: 小明小英 红1 红2 黄 红1 红1红1 红1红2 红1黄 红2 红2红1 红2红2 红2黄 黄 黄红1 黄红2 黄黄 所以,游戏中所有可能出现的结果有以下9种:红1红1,红1红2,红1黄,红2红1, 红2红2,红2黄,黄红1,黄红2,黄黄,这些结果出现的可能性是相等的. (2)这个游戏对双方不公平.理由如下: 由(1)可知,一次游戏有9种等可能的结果,其中两人摸到的球颜色相同的结果有5种,两人摸到的球颜色不同的结果有4种. ∴P(小英赢)=,P(小明赢)=. ∵P(小英赢)≠P(小明赢), ∴这个游戏对双方不公平.