题目
如图,圆O的直径为5,在圆O上位于直径AB的异侧有定点C和动点P,已知BC∶CA=4∶3,点P在半圆弧AB上运动(不与A、B重合),过C作CP的垂线CD交PB的延长线于D点 (1)求证:AC·CD=PC·BC; (2)当点P运动到AB弧中点时,求CD的长; (3)当点P运动到什么位置时,△PCD的面积最大?并求这个最大面积S.
答案:解:(1)∵AB为直径,∴∠ACB=90°.又∵PC⊥CD,∴∠PCD=90°. 而∠CAB=∠CPD,∴△ABC∽△PCD.∴. ∴AC·CD=PC·BC; (2)当点P运动到AB弧中点时,过点B作BE⊥PC于点E. ∵P是AB中点,∴∠PCB=45°,CE=BE=BC=2. 又∠CAB=∠CPB,∴tan∠CPB=tan∠CAB=.∴PE===. 从而PC=PE+EC=.由(1)得CD=PC= (3)当点P在AB上运动时,S△PCD=PC·CD.由(1)可知,CD=PC. ∴S△PCD=PC2.故PC最大时,S△PCD取得最大值; 而PC为直径时最大,∴S△PCD的最大值S=×52=.