题目

如图所示,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,求点A到直线l的距离AD. 答案: ∵AB为直径, ∴∠ACB=90°,即△ABC为直角三角形. 又AB=6,BC=3,∴sin∠CAB=. ∴∠CAB=30°, ∴AC=3,从而∠ABC=60°, ∴∠ACD=∠CBA=60°. ∴AD=AC·sin60°=.
数学 试题推荐