题目

如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论: ①4ac<b2; ②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3; ③3a+c>0 ④当y>0时,x的取值范围是﹣1≤x<3 ⑤当x<0时,y随x增大而增大 其中结论正确的个数是(  ) A.4个       B.3个 C.2个       D.1个 答案:B 【考点】二次函数图象与系数的关系. 【分析】利用抛物线与x轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对②进行判断;由对称轴方程得到b=﹣2a,然后根据x=﹣1时函数值为0可得到3a+c=0,则可对③进行判断;根据抛物线在x轴上方所对应的自变量的范围可对④进行判断;根据二次函数的性质对⑤进行判断. 【解答】解:∵抛物线与x轴有2个交点, ∴b2﹣4ac>0,所以①正确; ∵抛物线的对称轴为直线x=1, 而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0), ∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确; ∵x=﹣=1,即b=﹣2a, 而x=﹣1时,y=0,即a﹣b+c=0, ∴a+2a+c=0,所以③错误; ∵抛物线与x轴的两点坐标为(﹣1,0),(3,0), ∴当﹣1<x<3时,y>0,所以④错误; ∵抛物线的对称轴为直线x=1, ∴当x<1时,y随x增大而增大,所以⑤正确. 故选B.
数学 试题推荐