题目
20.已知三棱柱ABC-A1B1C1中底面边长和侧棱长均为a,侧面A1ACC1⊥底面ABC,A1B=a.20题图(Ⅰ)求异面直线AC与BC1所成角的余弦值;(Ⅱ)求证A1B⊥面AB1C.
答案: 解:过点B作BO⊥AC,垂足为点O,则BO⊥侧面ACC1A1,连结A1O, 在Rt△A1BO中,A1B=a,BO=a,∴A1O=a,又AA1=a,AO=.∴△A1AO为直角三角形,A1O⊥AC,A1O⊥底面ABC.解法一:(Ⅰ)∵ A1C1∥AC,∴ ∠BC1A1为异面直线AC与BC1所成的角.∵ A1O⊥面ABC,AC⊥BO,∴ AC⊥A1B,∴ A1C1⊥A1B.在Rt△A1BC1中,A1B=a,A1C1=a,∴ BC1=a∴cosBC1A1=,所以,异面直线AC与BC1所成角的余弦值为.(Ⅱ)设A1B与AB1相交于点D,∵ ABB1A1为菱形,∴ AB1⊥A1B.又 A1B⊥AC, AB1与AC是平面AB1C内两条相交直线,所以A1B⊥面AB1C.解法二:(Ⅰ)如图,建立坐标系,原点为BO⊥AC的垂足O.由题设条件可得B(a,0,0),C1(0,a,a),A(0,-a,0),C(0,a,0),∴ =(-a,a,a), =(0,a,0).设与的夹角为θ,则cosθ===,所以,异面直线AC与BC1所成角的余弦值为.(Ⅱ)A1(0,0,a),B(,0,0),∴ =(a,0,-a), =(0,a,0),·=0.∴ A1B⊥AC1.又ABB1A1为菱形,∴ A1B⊥AB1.又因为AB1与AC为平面AB1C内两条相交直线, 所以A1B⊥平面AB1C.