题目

设函数f(x)=tx2+2t2x+t-1(x∈R,t>0). (I)求f (x)的最小值h(t); (II)若h(t)<-2t+m对t∈(0,2)恒成立,求实数m的取值范围. 答案: 本题主要考查函数的单调性、极值以及函数导数的应用,考查运用数学知识分析问题解决问题的能力 解:(I)∵(), ∴当x=-t时,f(x)取最小值f(-t)=-t3+t-1, 即h(t)=-t3+t-1. (II)令g(t)=h(t)-(-2t+m)=-t3+3t-1-m, 由g’(t)=-3t2+3=0得t=1,t=-1(不合题意,舍去). 当t变化时g’(t)、g(t)的变化情况如下表: t (0,1) 1 (1,2) g’(t) + 0 - g(t) 递增 极大值1-m 递减 ∴g(t)在(0,2)内有最大值g(1)=1-m h(t)<-2t+m在(0,2)内恒成立等价于g(t)<0在(0,2)内恒成立, 即等价于1-m<0 所以m的取值范围为m>1
数学 试题推荐