题目
(2011•常州)已知:如图1,图形①满足AD=AB,MD=MB,∠A=72°,∠M=144°.图形②与图形①恰好拼成一个菱形(如图2).记AB的长度为a,BM的长度为b.(1)图形①中∠B= 72 °,图形②中∠E= 36 °;(2)小明有两种纸片各若干张,其中一种纸片的形状及大小与图形①相同,这种纸片称为“风筝一号”;另一种纸片的形状及大小与图形②相同,这种纸片称为“飞镖一号”.①小明仅用“风筝一号”纸片拼成一个边长为b的正十边形,需要这种纸片 5 张;②小明若用若干张“风筝一号”纸片和“飞镖一号”纸片拼成一个“大风筝”(如图3),其中∠P=72°,∠Q=144°,且PI=PJ=a+b,IQ=JQ.请你在图3中画出拼接线并保留画图痕迹.(本题中均为无重叠、无缝隙拼接)
答案:解:(1)连接AM,如图所示:∵AD=AB,DM=BM,AM为公共边,∴△ADM≌△ABM,∴∠D=∠B,又因为四边形ABMD的内角和等于360°,∠DAB=72°,∠DMB=144°,∴∠B==72°;在图2中,因为四边形ABCD为菱形,所以AB∥CD,∴∠A+∠ADC=∠A+∠ADM+∠CEF=180°,∠A=72°,∠ADM=72°,∴∠CEF=180°﹣72°﹣72°=36°; (2)①用“风筝一号”纸片拼成一个边长为b的正十边形,得到“风筝一号”纸片的点A与正十边形的中心重合,又∠A=72°,则需要这种纸片的数量==5;②根据题意可知:“风筝一号”纸片用两张和“飞镖一号”纸片用一张,画出拼接线如图所示:解析:略