题目

某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表: 售价x(元/千克) 50 60 70 销售量y(千克) 100 80 60 (1)求y与x之间的函数表达式; (2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本); (3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少? 答案:【解答】解:(1)设y与x之间的函数解析式为y=kx+b, , 得, 即y与x之间的函数表达式是y=﹣2x+200; (2)由题意可得, W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000, 即W与x之间的函数表达式是W=﹣2x2+280x﹣8000; (3)∵W=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,40≤x≤80, ∴当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,[来源:学,科,网Z,X,X,K] 当x=70时,W取得最大值,此时W=1800, 答:当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,售价为70元时获得最大利润,最大利润是1800元.
数学 试题推荐