题目

在R上的减函数f(x)满足当且仅当x∈MR+时,值域为[0,2],且f()=1,又对M中的任意x1、x2都有f(x1x2)=f(x1)+f(x2), (1)证明f-1(x1)f-1(x2)=f-1(x1+x2);(2)解不等式f-1(x2+x)f-1(x+2)≤(0≤x≤2). 答案:(1)证明:任取x1、x2∈[0,2],且设y1=f-1(x1),y2=f-1(x2)x1=f(y1),x2=f(y2),则x1+x2=f(y1)+f(y2)=f(y1y2)y1y2f-1(x1+x2).又y1y2=f-1(x1)f-1(x2),所以f-1(x1)f-1(x2)=f-1(x1+x2)成立.(2)解:f(x)为减函数,则f-1(x)也为减函数.因f()=f(×)=f()+f()=2,则f-1(x2+x)f-1(x+2)≤f-1(x2+2x+2)≤f-1(2)x=0或x=-2.又由已知条件0≤x≤2,得x=0.
数学 试题推荐