题目

如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为(  ) A.10cm      B.15cm      C.10cm D.20cm 答案:D【考点】圆锥的计算. 【分析】根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长,设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到r,然后利用勾股定理计算出圆锥的高. 【解答】解:过O作OE⊥AB于E,∵OA=OB=60cm,∠AOB=120°, ∴∠A=∠B=30°, ∴OE=OA=30cm, ∴弧CD的长==20π, 设圆锥的底面圆的半径为r,则2πr=20π,解得r=10, ∴圆锥的高==20. 故选D.  
数学 试题推荐