题目

如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD. (1)求抛物线的函数表达式; (2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标; (3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长. 答案:【考点】二次函数综合题. 【分析】(1)用待定系数法求出抛物线解析式即可. (2)分①点E在直线CD上方的抛物线上和②点E在直线CD下方的抛物线上两种情况,用三角函数求解即可; (3)分①CM为菱形的边和②CM为菱形的对角线,用菱形的性质进行计算; 【解答】解:(1)∵抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4), ∴设抛物线解析式为y=a(x+2)(x﹣4), ∴﹣8a=4, ∴a=﹣, ∴抛物线解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4; (2)如图1, ①点E在直线CD上方的抛物线上,记E′, 连接CE′,过E′作E′F′⊥CD,垂足为F′, 由(1)知,OC=4, ∵∠ACO=∠E′CF′, ∴tan∠ACO=tan∠E′CF′, ∴=, 设线段E′F′=h,则CF′=2h, ∴点E′(2h,h+4) ∵点E′在抛物线上, ∴﹣(2h)2+2h+4=h+4, ∴h=0(舍)h= ∴E′(1,), ②点E在直线CD下方的抛物线上,记E, 同①的方法得,E(3,), 点E的坐标为(1,),(3,) (3)①CM为菱形的边,如图2, 在第一象限内取点P′,过点 P′作P′N′∥y轴,交BC于N′,过点P′作P′M′∥BC, 交y轴于M′, ∴四边形CM′P′N′是平行四边形, ∵四边形CM′P′N′是菱形, ∴P′M′=P′N′, 过点P′作P′Q′⊥y轴,垂足为Q′, ∵OC=OB,∠BOC=90°, ∴∠OCB=45°, ∴∠P′M′C=45°, 设点P′(m,﹣ m2+m+4), 在Rt△P′M′Q′中,P′Q′=m,P′M′=m, ∵B(4,0),C(0,4), ∴直线BC的解析式为y=﹣x+4, ∵P′N′∥y轴, ∴N′(m,﹣m+4), ∴P′N′=﹣m2+m+4﹣(﹣m+4)=﹣m2+2m, ∴m=﹣m2+2m, ∴m=0(舍)或m=4﹣2, 菱形CM′P′N′的边长为(4﹣2)=4﹣4. ②CM为菱形的对角线,如图3, 在第一象限内抛物线上取点P,过点P作PM∥BC, 交y轴于点M,连接CP,过点M作MN∥CP,交BC于N, ∴四边形CPMN是平行四边形,连接PN交CM于点Q, ∵四边形CPMN是菱形, ∴PQ⊥CM,∠PCQ=∠NCQ, ∵∠OCB=45°, ∴∠NCQ=45°, ∴∠PCQ=45°, ∴∠CPQ=∠PCQ=45°, ∴PQ=CQ, 设点P(n,﹣ n2+n+4), ∴CQ=n,OQ=n+2, ∴n+4=﹣n2+n+4, ∴n=0(舍), ∴此种情况不存在. ∴菱形的边长为4﹣4. 【点评】此题是二次函数综合题,主要考查了待定系数法求抛物线解析式,菱形的性质,平行四边形的性质,判定,锐角三角函数,解本题的关键是用等角的同名三角函数值相等建立方程求解.
数学 试题推荐