题目
已知数列{an}是等差数列,且a1=2,a1+a2+a3=12.(1)求数列{an}的通项公式;(2)令bn=an·3n,求数列{bn}的前n项和公式.
答案:解:(1)设数列{an}的公差为d,则a1+a2+a3=3a1+3d=12.又a1=2,得d=2.所以an=2n.(2)由bn=an·3n=2n·3n,得Sn=2·3+4·32+…+(2n-2)·3n-1+2n·3n, ①3Sn=2·32+4·33+…+(2n-2)·3n+2n·3n+1. ②①-②得-2Sn=2(3+32+33+…+3n)-2n·3n+1=3(3n-1)-2n·3n+1.所以Sn=+n·3n+1.