题目

斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则=________. 答案: 【解析】 【分析】 先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y并整理得到关于x的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果. 【详解】∵抛物线的方程为,∴抛物线的焦点F坐标为, 又∵直线AB过焦点F且斜率为,∴直线AB的方程为: 代入抛物线方程消去y并化简得, 解法一:解得     所以 解法二: 设,则, 过分别作准线的垂线,设垂足分别为如图所示. 故答案为: 【点睛】本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题.
数学 试题推荐