题目

如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F, (1)求∠F的度数; (2)若CD=3,求DF的长. 答案:【考点】等边三角形的判定与性质. 【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解; (2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解. 【解答】解:(1)∵△ABC是等边三角形, ∴∠B=60°, ∵DE∥AB, ∴∠EDC=∠B=60°, ∵EF⊥DE, ∴∠DEF=90°, ∴∠F=90°﹣∠EDC=30°; (2)∵∠ACB=60°,∠EDC=60°, ∴△EDC是等边三角形. ∴ED=DC=3, ∵∠DEF=90°,∠F=30°, ∴DF=2DE=6. 【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.
数学 试题推荐