题目

如图,△ABC中,角平分线AD、BE、CF相交于点H,过H点作HG⊥AB,垂足为G,那么∠AHE=∠CHG吗?为什么?   答案:因为AD、BE、CF为△ABC的角平分线,所以可设∠BAD=∠CAD=x°,∠ABE=∠CBE=y°,∠BCF=∠ACF=z°,则2x+2y+2z=180,即x+y+z=90.在△AHB中,∠AHE=x+y=90°-z°,在△CHG中,∠CHG=90°-z°,所以∠AHE=∠CHG.
数学 试题推荐