题目

如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED. (1) 探究猜想:①若∠A=35°,∠D=30°,则∠AED等于多少度?②若∠A=48°,∠D=32°,则∠AED等于多少度?③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论. (2) 拓展应用:如图2,射线EF与长方形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求写出证明过程) 答案: 解:①如图①,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∵∠A=35°,∠D=30°,∴∠1=∠A=35°,∠2=∠D=30°,∴∠AED=∠1+∠2=65°;②过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∵∠A=48°,∠D=32°,∴∠1=∠A=48°,∠2=∠D=32°,∴∠AED=∠1+∠2=80°;③猜想:∠AED=∠EAB+∠EDC.理由:过点E作EF∥CD,∵AB∥DC∴EF∥AB(平行于同一条直线的两直线平行),∴∠1=∠EAB,∠2=∠EDC(两直线平行,内错角相等),∴∠AED=∠1+∠2=∠EAB+∠EDC(等量代换). 解:根据题意得:点P在区域①时,∠EPF=360°﹣(∠PEB+∠PFC);点P在区域②时,∠EPF=∠PEB+∠PFC;点P在区域③时,∠EPF=∠PEB﹣∠PFC;点P在区域④时,∠EPF=∠PFC﹣∠PEB.
数学 试题推荐