题目
已知数列{an}满足a1=a,an+1= (n∈N*).
(1)
求a2 , a3 , a4;
(2)
猜测数列{an}的通项公式,并用数学归纳法证明.
答案: 解:由an+1= 12−an ,可得a2= 12−a1 = 12−a ,a3= 12−a2 = 12−12-a = 2−a3−2a ,a4= 12−a3 = 12−2−a3-2a = 3−2a4−3a
解:猜测an= (n-1)-(n-2)an-(n-1)a (n∈N*).下面用数学归纳法证明:①当n=1时,左边=a1=a,右边= (1-1)-(1-2)a1-(1-1)a =a,猜测成立.②假设当n=k(k∈N*)时猜测成立,即ak= (k-1)-(k-2)ak-(k-1)a .则当n=k+1时,ak+1= 12−ak = 12−(k-1)-(k-2)ak-(k-1)a= k(k-1)a2[k-(k-1)a]-[(k-1)-(k-2)a] = k(k-1)a(k+1)-ka .故当n=k+1时,猜测也成立.由①,②可知,对任意n∈N*都有an= (n-1)-(n-2)an-(n-1)a 成立