题目
如图,在△ABC中,AB =AC , AD⊥BC于点D , AM是△ABC的外角∠CAE的平分线.
(1)
求证:AM∥BC;
(2)
若DN平分∠ADC交AM于点N,判断△ADN的形状并说明理由.
答案: 解:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD= 12∠BAC .∵AM平分∠EAC,∴∠EAM=∠MAC= 12∠EAC .∴∠MAD=∠MAC+∠DAC= 12∠EAC+12∠BAC = 12×180°=90° .∵AD⊥BC,∴ ∠ADC=90° ,∴∠MAD+ ∠ADC=180° ,∴AM∥BC.
解:△ADN是等腰直角三角形,理由是:∵AM∥AD,∴∠AND=∠NDC,∵DN平分∠ADC,∴∠ADN=∠NDC=∠AND.∴AD=AN.∴△ADN是等腰直角三角形