题目
如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD交于点D,连接CD.
(1)
求证:①AB=AD;②CD平分∠ACE.
(2)
猜想∠BDC与∠BAC之间有何数量关系?并对你的猜想加以证明.
答案: 解:①∵AD∥BE, ∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD;②∵AD∥BE,∴∠ADC=∠DCE,由①知AB=AD,又∵AB=AC,∴AC=AD,∴∠ACD=∠ADC,∴∠ACD=∠DCE,∴CD平分∠ACE
解:∠BDC= 12 ∠BAC, ∵BD、CD分别平分∠ABE,∠ACE,∴∠DBC= 12 ∠ABC,∠DCE= 12 ∠ACE,∵∠BDC+∠DBC=∠DCE,∴∠BDC+ 12 ∠ABC= 12 ∠ACE,∵∠BAC+∠ABC=∠ACE,∴∠BDC+ 12 ∠ABC= 12 ∠ABC+ 12 ∠BAC,∴∠BDC= 12 ∠BAC