题目

已知数列{an}满足a1=1,an+1= . (Ⅰ)求证:an+1<an;(Ⅱ)求证: ≤an≤ . 答案:解:(Ⅰ)证明:由a1=1,an+1= anan2+1 ,得an>0,(n∈N), 则an+1﹣an= anan2+1 ﹣an= −an3an2+1 <0,∴an+1<an;(Ⅱ)证明:由(Ⅰ)知0<an<1,又an+1= anan2+1 .,∴ an+1an = 1an2+1 ≥ 12 ,即an+1> 12 an,∴an> 12 an﹣1≥( 12 )2an﹣1≥…≥( 12 )2an﹣1≥( 12 )n﹣1a1= 12n ,即an≥ 12n−1 .由an+1= anan2+1 ,则 1an+1 =an+ 1an ,∴ 1an+1 ﹣ 1an =an,∴ 1a2 ﹣ 1a1 =a1=1, 1a3 ﹣ 1a2 =a2= 12 , 1a4 ﹣ 1a3 =a3=( 12 )2… 1an ﹣ 1an−1 =an﹣1≥( 12 )n﹣2,累加得 1an ﹣ 1a1 =1+ 12 +( 12 )2+…+( 12 )n﹣2= 1−12n−11−12 =2﹣( 12 )n﹣2,而a1=1,∴ 1an ≥3﹣( 12 )n﹣2= 3⋅2n−2−12n−2 = 2n3⋅2n−4 ,∴an≤ 2n3⋅2n−4 .综上得 12n−1 ≤an≤ 2n3⋅2n−4
数学 试题推荐