题目
如图所示,竖直平面xOy内存在水平向右的匀强电场,场强大小E=10N/c,在y≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T一带电量q=+0.2C、质量m=0.4kg的小球由长l=0.4m的细线悬挂于P点小球可视为质点,现将小球拉至水平位置A无初速释放,小球运动到悬点P正下方的坐标原点O时,悬线突然断裂,此后小球又恰好能通过O点正下方的N点.(g=10m/s2),求:
(1)
小球运动到O点时的速度大小;
(2)
悬线断裂前瞬间拉力的大小;
(3)
ON间的距离.
答案: 解:小球从A运到O的过程中,根据动能定理: 12mv02=mgl−qEl ①带入数据求得小球在O点速度为:vo=2m/s ②
解:小球运到O点绳子断裂前瞬间,对小球应用牛顿第二定律: T−mg−f洛=mv02l ③ f洛=Bvoq ④②③④联立得:T=8.2N ⑤
解:绳断后,小球水平方向加速度 ax=F电m=Eqm=5m/s2 ⑥小球从O点运动至N点所用时间 t= 2v0ax = 2×25 s=0.8s ⑦ON间距离 h=12gt2=3.2m ⑧答:小球运动到O点时的速度大小为2m/s,悬线断裂前瞬间拉力的大小为8.2N,ON间的距离为3.2m