题目
设数列{an}满足an+1=an2﹣an+1(n∈N*),Sn为{an}的前n项和.证明:对任意n∈N* , (I)当0≤a1≤1时,0≤an≤1;(II)当a1>1时,an>(a1﹣1)a1n﹣1;(III)当a1= 时,n﹣ <Sn<n.
答案:证明:(Ⅰ)用数学归纳法证明. ①当n=1时,0≤an≤1成立.②假设当n=k(k∈N*)时,0≤ak≤1,则当n=k+1时, ak+1=ak2−ak+1 =( ak−12 )2+ 34 ∈[ 34,1 ]⊂[0,1],由①②知, 0≤an≤1,(n∈N*) .∴当0≤a1≤1时,0≤an≤1.(Ⅱ)由an+1﹣an=( an2−an+1 )﹣an=(an﹣1)2≥0,知an+1≥an.若a1>1,则an>1,(n∈N*),从而 an−1−1=(an2−an+1)−1 = an2 ﹣an=an(an﹣1),即 an+1−1an−1 =an≥a1,∴ an−1−1≥(a1−1)a1n−1 ,∴当a1>1时,an>(a1﹣1)a1n﹣1.(Ⅲ)当 a1=12 时,由(Ⅰ),0<an<1(n∈N*),故Sn<n,令bn=1﹣an(n∈N*),由(Ⅰ)(Ⅱ),bn>bn+1>0,(n∈N*),由 an+1=an2−an+1 ,得 bn2=bn−bn+1 .∴ b12+b22+⋯+bn2 =(b1﹣b2)+(b2﹣b3)+…+(bn﹣bn+1)=b1﹣bn+1<b1= 12 ,∵ b12+b22+⋯+bn2 ≥ nbn2 ,∴nbn2 <12 ,即 bn<12n ,(n∈N*),∵ bn<12n = 22n<2n+n−1 = 2(n−n−1) ,∴b1+b2+…+bn <2 [( 1−0 )+( 2−1 )+…+( n−n−1 )]= 2n ,即n﹣Sn <2n ,亦即 Sn>n−2n ,∴当 a1=12 时, n−2n<Sn<n .