题目
设集合 , .
(1)
若 ,求实数 的值;
(2)
若 ,求实数 的范围.
答案: 解:∵ A∪B=B, ∴A⊆B,又B中最多有两个元素,∴A=B,∴x=0,﹣4是方程x2+2(a+1)x+a2﹣1=0的两个根,A=1;
解:∵A={x|x2+4x=0,x∈R}∴A={0,﹣4},∵B={x|x2+2(a+1)x+a2﹣1=0},且B⊆A.故①B=∅时,△=4(a+1)2﹣4(a2﹣1)<0,即a<﹣1,满足B⊆A;②B≠∅时,当a=﹣1,此时B={0},满足B⊆A;当a>﹣1时,x=0,﹣4是方程x2+2(a+1)x+a2﹣1=0的两个根,A=1;综上所述a=1或a≤﹣1