题目

已知函数.(Ⅰ)证明:;(Ⅱ)若直线为函数的切线,求的最小值. 答案:【答案】(1)见解析.(2) .【解析】(1)由即为,令,利用导数求得函数的单调性与最值,即可得到结论;(2)求得函数的导数,设出切点,可得的值和切线方程,令,求得,令,利用导数求得函数的单调性与最小值,即可求解.(Ⅰ)证明:整理得令,当,,所以在上单调递增;当,,所以在上单调递减,所以,不等式得证.(Ⅱ),设切点为,则,函数在点处的切线方程为,令,解得,所以,令,因为,,所以,,当,,所以在上单调递减;当,,所以在上单调递增,因为,.
数学 试题推荐