题目

已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为−.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.(i)证明:是直角三角形;(ii)求面积的最大值. (二)选考题:共10分.请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分. 答案:【答案】(1)详见解析(2)详见解析【解析】(1)分别求出直线AM与BM的斜率,由已知直线AM与BM的斜率之积为−,可以得到等式,化简可以求出曲线C的方程,注意直线AM与BM有斜率的条件;(2)(i)设出直线的方程,与椭圆方程联立,求出P,Q两点的坐标,进而求出点的坐标,求出直线的方程,与椭圆方程联立,利用根与系数关系求出的坐标,再求出直线的斜率,计算的值,就可以证明出是直角三角形;(ii)由(i)可知三点坐标,是直角三角形,求出的长,利用面积公式求出的面积,利用导数求出面积的最大值.(1)直线的斜率为,直线的斜率为,由题意可知:,所以曲线C是以坐标原点为中心,焦点在轴上,不包括左右两顶点的椭圆,其方程为;(2)(i)设直线的方程为,由题意可知,直线的方程与椭圆方程联立,即或,点P在第一象限,所以,因此点的坐标为直线的斜率为,可得直线方程:,与椭圆方程联立,,消去得,(*),设点,显然点的横坐标和是方程(*)的解所以有,代入直线方程中,得,所以点的坐标为,直线的斜率为; ,因为所以,因此是直角三角形;(ii)由(i)可知:,的坐标为,,,,因为,所以当时,,函数单调递增,当时,,函数单调递减,因此当时,函数有最大值,最大值为.
数学 试题推荐