题目
已知空间几何体中,与均为边长为的等边三角形,为腰长为的等腰三角形,平面平面,平面平面. (1)试在平面内作一条直线,使直线上任意一点与的连线均与平面平行,并给出详细证明(2)求点到平面的距离
答案:【答案】(1)见解析;(2)【解析】(1)取BC和BD的中点H、G,利用面面平行的判断定理证得平面CDE平行平面AHG即可求得结果;(2)分别求得三角形ABC和CDE的面积以及求得E到平面ABC的距离,再利用等体积法即可求得到平面的距离.如图所示:取BC和BD的中点H、G,连接HG,HG为所求直线,证明如下:因为BC和BD的中点H、G,所以,又平面平面,且平面BCD又平面平面. ,得,所以 ,即所以,所以直线HG上任意一点与的连线均与平面平行. 由(1)可得,即平面ABC所以点E到平面ABC的距离和点O到平面ABC的距离相等,记为三角形ABC的面积 而三角形ACE的面积 用等体积法可得: