题目
已知数列{an}的前n项和Sn=2n+1,(n∈N*).
(1)
求数列{an}的通项an;
(2)
设bn=n•an+1 , 求数列{bn}的前n项和Tn;
(3)
设cn= ,求证:c1+c2+…+cn< .(n∈N*)
答案: 解:当n=1时,a1=S1=3, 当n≥2时,an=Sn﹣Sn﹣1=2n﹣1,∴数列{an}的通项an= {3,n=12n-1,n≥2
解:由(1)可知bn=n•an+1=n•2n, 则Tn=1•21+2•22+3•23+…+n•2n,2Tn=1•22+2•23+…+(n﹣1)•2n+n•2n+1,两式相减,得:﹣Tn=21+22+23+…+2n﹣n•2n+1=(1﹣n)•2n+1﹣2,∴Tn=2+(n﹣1)•2n+1
证明:由(1)可知cn= 12an-1 = {15,n=112n-1,n≥2 , 当n=1时,c1= 15 < 65 ,当n≥2时,c1+c2+…+cn= 15 + 122-1 + 123-1 +…+ 12n-1 < 15 + 1+122-1+1 + 1+123-1+1 +…+ 1+12n-1+1 = 15 + 12 + 122 +…+ 12n-1 = 65 ﹣ 12n-1 < 65 ,综上所述,c1+c2+…+cn< 65 (n∈N*)