题目

如图所示,已知直线L过点A(0,1)和B(1,0),P是x轴正半轴上的动点,OP的垂直平分线交L于点Q,交x轴于点M.(1)直接写出直线L的解析式;(2)设OP=t,△OPQ的面积为S,求S关于t的函数关系式;并求出当0<t<2时,S的最大值;(3)直线L1过点A且与x轴平行,问在L1上是否存在点C,使得△CPQ是以Q为直角顶点的等腰直角三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由. 答案:【答案】(1)y=1﹣x;(2),S有最大值;(3)存在点C(1,1).【解析】(1)已知直线L过A,B两点,可将两点的坐标代入直线的解析式中,用待定系数法求出直线L的解析式;(2)求三角形OPQ的面积,就需知道底边OP和高QM的长,已知了OP为t,关键是求出QM的长.已知了QM垂直平分OP,那么OM=t,然后要分情况讨论:①当OM<OB时,即0<t<2时,BM=OB﹣OM,然后在等腰直角三角形BQM中,即可得出QM=BM,由此可根据三角形的面积公式得出S与t的函数关系式;②当OM>OB时,即当t≥2时,BM=OM﹣OB,然后根据①的方法即可得出S与t的函数关系式,然后可根据0<t<2时的函数的性质求出S的最大值;(3)如果存在这样的点C,那么CQ=QP=OQ,因此C,O就关于直线BL对称,因此C的坐标应该是(1,1).那么只需证明CQ⊥PQ即可.分三种情况进行讨论:①当Q在线段AB上(Q,B不重合),且P在线段OB上时.要证∠CQP=90°,那么在四边形CQPB中,就需先证出∠QCB与∠QPB互补,由于∠QPB与∠QPO互补,而∠QPO=∠QOP,因此只需证∠QCB=∠QOB即可,根据折叠的性质,这两个角相等,由此可得证;②当Q在线段AB上,P在OB的延长线上时,根据①已得出∠QPB=∠QCB,那么这两个角都加上一个相等的对顶角后即可得出∠CQP=∠CBP=90度;③当Q与B重合时,很显然,三角形CQP应该是个等腰直角三角形.综上所述即可得出符合条件C点的坐标.(1)y=1﹣x;(2)∵OP=t,∴Q点的横坐标为t,①当,即0<t<2时,QM=1-t,∴S△OPQ=t(1﹣t),②当t≥2时,QM=|1﹣t|=t﹣1,∴S△OPQ=t(t﹣1),∴ 当0<t<1,即0<t<2时,S=t(1﹣t)=﹣(t﹣1)2+,∴当t=1时,S有最大值;(3)由OA=OB=1,故△OAB是等腰直角三角形,若在L1上存在点C,使得△CPQ是以Q为直角顶点的等腰直角三角形,则PQ=QC,所以OQ=QC,又L1∥x轴,则C,O两点关于直线L对称,所以AC=OA=1,得C(1,1).下面证∠PQC=90度.连CB,则四边形OACB是正方形.①当点P在线段OB上,Q在线段AB上(Q与B、C不重合)时,如图﹣1,由对称性,得∠BCQ=∠QOP,∠QPO=∠QOP,∴∠QPB+∠QCB=∠QPB+∠QPO=180°,∴∠PQC=360°﹣(∠QPB+∠QCB+∠PBC)=90度;②当点P在线段OB的延长线上,Q在线段AB上时,如图﹣2,如图﹣3∵∠QPB=∠QCB,∠1=∠2,∴∠PQC=∠PBC=90度;③当点Q与点B重合时,显然∠PQC=90度,综合①②③,∠PQC=90度,∴在L1上存在点C(1,1),使得△CPQ是以Q为直角顶点的等腰直角三角形.
数学 试题推荐
最近更新