题目
如图四边形ABCD为菱形,G为AC与BD交点,,(I)证明:平面平面;(II)若, 三棱锥的体积为,求该三棱锥的侧面积.
答案:【答案】(1)见解析(2)3+2【解析】试题分析:(Ⅰ)由四边形ABCD为菱形知ACBD,由BE平面ABCD知ACBE,由线面垂直判定定理知AC平面BED,由面面垂直的判定定理知平面平面;(Ⅱ)设AB=,通过解直角三角形将AG、GC、GB、GD用x表示出来,在AEC中,用x表示EG,在EBG中,用x表示EB,根据条件三棱锥的体积为求出x,即可求出三棱锥的侧面积.试题解析:(Ⅰ)因为四边形ABCD为菱形,所以ACBD,因为BE平面ABCD,所以ACBE,故AC平面BED.又AC平面AEC,所以平面AEC平面BED(Ⅱ)设AB=,在菱形ABCD中,由ABC=120°,可得AG=GC= ,GB=GD=.因为AEEC,所以在AEC中,可得EG= .由BE平面ABCD,知EBG为直角三角形,可得BE=.由已知得,三棱锥E-ACD的体积.故=2从而可得AE=EC=ED=.所以EAC的面积为3,EAD的面积与ECD的面积均为.故三棱锥E-ACD的侧面积为.