题目
已知数列 满足 , . (Ⅰ)证明:数列 是等差数列; (Ⅱ)求数列 的前 项和 .
答案:解:(Ⅰ)由 an+1=an−2n+2 ,可得 an+1+2n+1=an+2n+2 ,即 (an+1+2n+1)−(an+2n)=2 , 又 a1=1 ,∴ a1+2=3 , ∴数列 {an+2n} 是首项为3,公差为2的等差数列. (Ⅱ)由(Ⅰ)知, an+2n=3+2(n−1)=2n+1 , ∴ an=2n+1−2n , ∴ Sn=(3+5+⋅⋅⋅+2n+1)−(2+4+8+⋯+2n) =12n(2n+4)−2(1−2n)1−2=n2+2n−2n+1+2 .