题目
如图,在平面四边形ABCD中,AD=1,CD=2,AC= . (Ⅰ)求cos∠CAD的值;(Ⅱ)若cos∠BAD=﹣ ,sin∠CBA= ,求BC的长.
答案:解:(Ⅰ)cos∠CAD= AC2+AD2−CD22·AD·AC = 1+7−42×1×7 = 277 . (Ⅱ)∵cos∠BAD=﹣ 714 ,∴sin∠BAD= 1−7196 = 32114 ,∵cos∠CAD= 277 ,∴sin∠CAD= 1−47 = 217 ∴sin∠BAC=sin(∠BAD﹣∠CAD)=sin∠BADcos∠CAD﹣cos∠BADsin∠CAD= 32114 × 277 + 714 × 217 = 32 ,∴由正弦定理知 BCsin∠BAC = ACsin∠ABC ,∴BC= ACsin∠ABC •sin∠BAC= 7216 × 32 =3