题目
已知数列{an}和{bn}满足a1=2,b1=1,an+1=2an(n∈N*),b1+ b2+ b3+…+ bn=bn+1﹣1(n∈N*) (Ⅰ)求an与bn;(Ⅱ)记数列{anbn}的前n项和为Tn , 求Tn .
答案:解:(Ⅰ)由a1=2,an+1=2an,得 an=2n(n∈N*) . 由题意知,当n=1时,b1=b2﹣1,故b2=2,当n≥2时,b1+ 12 b2+ 13 b3+…+ 1n−1bn−1 =bn﹣1,和原递推式作差得, 1nbn=bn+1−bn ,整理得: bn+1n+1=bnn ,∴ bn=n(n∈N*) ;(Ⅱ)由(Ⅰ)知, anbn=n⋅2n ,因此 Tn=2+2⋅22+3⋅23+⋯+n⋅2n 2Tn=22+2⋅23+3⋅24+⋯+n⋅2n+1 ,两式作差得: −Tn=2+22+⋯+2n−n⋅2n+1=2(1−2n)1−2−n⋅2n+1 , Tn=(n−1)⋅2n+1+2 (n∈N*).