题目

感知:如图①,△ABC是等腰直角三角形,∠ACB=90°,正方形CDEF的顶点D,F分别在边AC,BC上,易证:AD=BF(不需要证明); (1) 探究:将图①的正方形CDEF绕点C顺时针旋转α(0°<α<90°),连接AD,BF,其他条件不变,如图②,求证:AD=BF; (2) 应用:若α=45°,CD= ,BE=1,如图③,则BF=. 答案: 证明:如图②,∵四边形CDEF为正方形,∴CD=CF,由旋转得:∠ACD=∠BCF,∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∴△ADC≌△BFC,∴AD=BF; 【1】5
数学 试题推荐