题目

如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是平行四边形,且AB=1,BC=2,∠ABC=60°,E为BC的中点,AA1⊥平面ABCD. (1) 证明:平面A1AE⊥平面A1DE; (2) 若DE=A1E,试求异面直线AE与A1D所成角的余弦值. 答案: 证明:依题意,BE=EC= 12 BC=AB=CD, ∴△ABE是正三角形,∠AEB=60°,又∵△CDE中,∠CED=∠CDE= 12 (180°﹣∠ECD)=30°∴∠AED=180°﹣∠CED﹣∠AEB=90°,即DE⊥AE,∵AA1⊥平面ABCD,DE⊆平面ABCD,∴DE⊥AA1.,∵AA1∩AE=A,∴DE⊥平面A1AE,∵DE⊆平面A1DE,∴平面A1AE⊥平面A1DE 解:取BB1的中点F,连接EF、AF,连接B1C, ∵△BB1C中,EF是中位线,∴EF∥B1C∵A1B1∥AB∥CD,A1B1=AB=CD,∴四边形ABCD是平行四边形,可得B1C∥A1D∴EF∥A1D,可得∠AEF(或其补角)是异面直线AE与A1D所成的角.∵△CDE中,DE= 3 CD= 3 =A1E= A1A2+AE2 ,AE=AB=1∴A1A= 2 ,由此可得BF= 22 ,AF=EF= 12+1 = 62 ,∴cos∠AEF= AE2+EF2+AF22×AE×EF = 66 ,即异面直线AE与A1D所成角的余弦值为 66
数学 试题推荐