题目
在△ABC中,内角A,B,C所对的边分别为a,b,c.已知cos2A+ =2cosA.
(1)
求角A的大小;
(2)
若a=1,求△ABC的周长l的取值范围.
答案: 解:cos2A+ 32 =2cosA,即2cos2A﹣1+ 32 =2cosA,即有4cos2A﹣4cosA+1=0,(2cosA﹣1)2=0,即cosA= 12 ,(0<A<π),则A= π3
解:由正弦定理可得b= asinBsinA = sinB32 = 23 sinB,c= asinCsinA = 23 sinC,则l=a+b+c=1+ 23 (sinB+sinC),由A= π3 ,B+C= 2π3 ,则sinB+sinC=sinB+sin( 2π3 ﹣B)= 32 sinB+ 32 cosB= 3 sin(B+ π6 ),即有l=1+2sin(B+ π6 ),由于0<B< 2π3 ,则 π6 <B+ π6 < 5π6 , 12< sin(B+ π6 )≤1,即有2<l≤3.则有△ABC的周长l的取值范围为(2,3]