题目
已知等差数列{an}的公差为2,前n项和为Sn , 且S1 , S2 , S4成等比数列. (Ⅰ)求数列{an}的通项公式;(Ⅱ)令bn=(﹣1)n﹣1 ,求数列{bn}的前n项和Tn .
答案:解:(Ⅰ)∵等差数列{an}的公差为2,前n项和为Sn, ∴Sn= na1+n(n−1)2d =n2﹣n+na1,∵S1,S2,S4成等比数列,∴ S22=S1⋅S4 ,∴ (22−2+2a1)2=a1⋅(42−4+4a1) ,化为 (1+a1)2=a1(3+a1) ,解得a1=1.∴an=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.(Ⅱ)由(Ⅰ)可得bn=(﹣1)n﹣1 4nanan+1 = (−1)n−1⋅4n(2n−1)(2n+1) = (−1)n−1(12n−1+12n+1) .∴Tn= (1+13) ﹣ (13+15) + (15+17) ++ (−1)n−1(12n−1+12n+1) .当n为偶数时,Tn= (1+13) ﹣ (13+15) + (15+17) ++ (12n−3+12n−1) ﹣ (12n−1+12n+1) =1﹣ 12n+1 = 2n2n+1 .当n为奇数时,Tn= (1+13) ﹣ (13+15) + (15+17) +﹣ (12n−3+12n−1) + (12n−1+12n+1) =1+ 12n+1 = 2n+22n+1 .∴Tn= {2n2n+1,n为偶数2n+22n+1,n为奇数 .