题目
已知数列{an}的各项均为正数,前n和为Sn , 且Sn= (n∈N*).
(1)
求证:数列{an}是等差数列;
(2)
设bn=an•3n , 求数列{bn}的前n项的和Tn .
答案: 解:证明:当n≥2时, Sn=(an+2)(an−1)2(n∈N∗) .…①Sn−1=(an−1+2)(an−1−1)2 …②①﹣②得: an=an2+an−an−12−an−12 ,整理得:(an+an﹣1)(an﹣an﹣1)=(an+an﹣1).∵数列{an}的各项均为正数,即an+an﹣1≠0,∴an﹣an﹣1=1(n≥2).当n=1时, a1=S1=(a1+2)(a1−1)2 ,得 a12−a1−2=0 ,由a1>0,得a1=2,…(4分)∴数列{an}是首项为2,公差为1的等差数列.
解:由(1)得an=2+(n﹣1)×1=n+1∴ bn=an⋅3n=(n+1)⋅3nTn=2×31+3×32+4×33+⋯+n×3n−1+(n+1)×3n …(1)3Tn=2×32+3×33+4×34 …+n×3n+(n+1)×3n+1…(2)(1)﹣(2)得 −2Tn=6+32+33+⋯+3n−(n+1)×3n+1∴ −2Tn=6+32−3n×31−3−(n+1)×3n+1=3n+1−32−(n+1)×3n+1∴ Tn=14(2n+1)3n+1−34