题目

如图,请在下列四个论断中选出两个作为条件,推出四边形ABCD是平行四边形,并予以证明(写出一种即可). ①AD∥BC;②AB=CD;③∠A=∠C;④∠B+∠C=180°. 已知:在四边形ABCD中,. 求证:四边形ABCD是平行四边形. 答案:【1】解:已知:①③,①④,②④,③④均可,其余均不可以. 解法一: 已知:在四边形ABCD中,①AD∥BC,③∠A=∠C, 求证:四边形ABCD是平行四边形. 证明:∵AD∥BC, ∴∠A+∠B=180°,∠C+∠D=180°. ∵∠A=∠C, ∴∠B=∠D. ∴四边形ABCD是平行四边形. 解法二: 已知:在四边形ABCD中,①AD∥BC,④∠B+∠C=180°, 求证:四边形ABCD是平行四边形. 证明:∵∠B+∠C=180°, ∴AB∥CD, 又∵AD∥BC, ∴四边形ABCD是平行四边形; 解法三: 已知:在四边形ABCD中,②AB=CD,④∠B+∠C=180°, 求证:四边形ABCD是平行四边形. 证明:∵∠B+∠C=180°, ∴AB∥CD, 又∵AB=CD, ∴四边形ABCD是平行四边形; 解法四: 已知:在四边形ABCD中,③∠A=∠C,④∠B+∠C=180°, 求证:四边形ABCD是平行四边形. 证明:∵∠B+∠C=180°, ∴AB∥CD, ∴∠A+∠D=180°, 又∵∠A=∠C, ∴∠B=∠D, ∴四边形ABCD是平行四边形.
数学 试题推荐
最近更新